A hybrid mass transport finite element method for Keller–Segel type systems


We propose a new splitting scheme for general reaction–taxis–diffusion systems in one spatial dimension capable to deal with simultaneous concentrated and diffusive regions as well as travelling waves and merging phenomena. The splitting scheme is based on a mass transport strategy for the cell density coupled with classical finite element approximations for the rest of the system. The built-in mass adaption of the scheme allows for an excellent performance even with respect to dedicated mesh-adapted AMR schemes in original variables.

J. Sci. Comput