A mass-conservative Lagrange-Galerkin scheme of second order in time for convection-diffusion problems is presented, and convergence with optimal error estimates is proved in the framework of L²-theory. The introduced scheme maintains the advantages of the Lagrange-Galerkin method, i.e., CFL-free robustness for convection-dominated problems and a symmetric and positive coefficient matrix resulting from the discretization. In addition, the scheme conserves the mass on the discrete level. Unconditional stability and error estimates of second order in time are proved by employing two new key lemmas on the truncation error of the material derivative in conservative form and on a discrete Gronwall inequality for multistep methods. The mass-conservation property is achieved by the Jacobian multiplication technique introduced by Rui and Tabata in 2010, and the accuracy of second order in time is obtained based on the idea of the multistep Galerkin method along characteristics originally introduced by Ewing and Russel in 1981. Numerical results confirm the theoretical convergence orders in one, two and three dimensions.