We present an administration technique for the bookkeeping of adaptive mesh refinement on (hyper-)rectangular meshes. Our technique is a unified approach for h-refinement on 1-, 2- and 3D domains, which is easy to use and avoids traversing the connectivity graph of the ancestry of mesh cells. Due to the employed rectangular mesh structure, the identification of the siblings and the neighbouring cells is greatly simplified. The administration technique is particularly designed for smooth meshes, where the smoothness is dynamically used in the matrix operations. It has a small memory footprint that makes it affordable for a wide range of mesh resolutions over a large class of problems. We present three applications of this technique, one of which addresses h-refinement and its benefits in a 2D tumour growth and invasion problem.